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Takayasu, Sato, and Takayasu@Phys. Rev. Lett.79, 966 ~1997!# revisited the question of stochastic pro-
cesses with multiplicative noise, which have been studied in several different contexts over the past decades.
We focus on the regime, found for a generic set of control parameters, in which stochastic processes with
multiplicative noise produce intermittency of a special kind, characterized by a power-law probability density
distribution. We briefly explain the physical mechanism leading to a power law probability distribution func-
tion, and provide a list of references for these results dating back from a quarter of century. We explain how
the formulation in terms of the characteristic function developed by Takayasu, Sato, and Takayasu can be
extended to exponentsm.2, which explains the ‘‘reason for the lucky coincidence.’’ The multidimensional
generalization of the results of Takayasu, Sato, and Takayasu and the present status of the problem are briefly
summarized. The discovery of stretched exponential tails in the presence of the cutoff introduced by Takayasu,
Sato, and Takayasu is explained theoretically. We end by briefly listing applications.
@S1063-651X~98!01304-X#

PACS number~s!: 05.20.2y, 05.40.1j, 89.90.1n
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I. STOCHASTIC MULTIPLICATIVE PROCESSES
REPELLED FROM THE ORIGIN

Takayasu, Sato, and Takayasu@1# recently studied the dis
crete stochastic equation

x~ t11!5b~ t !x~ t !1 f ~ t ! ~1!

as a generic model for generating power law PDF~probabil-
ity density function!. Equation~1! defines a stationary pro
cess if^ lnb(t)&,0.

In order to obtain a power-law PDF,b(t) must sometimes
take values larger than 1, corresponding to intermittent a
plifications. This is not enough: the presence of the addi
term f (t) ~which can be constant or stochastic! is needed to
ensure a ‘‘reinjection’’ to finite values, susceptible to t
intermittent amplifications. It was thus shown@2# that Eq.~1!
is only one among many convergent (^ ln b(t)&,0) multipli-
cative processes with repulsion from the origin@due to the
f (t) term in Eq.~1!# of the form

x~ t11!5eF„x~ t !,$b~ t !, f ~ t !, . . . %…b~ t !x~ t !, ~2!

such thatF→0 for largex(t) @leading to a pure multiplica-
tive process for largex(t)# andF→` for x(t)→0 ~repulsion
from the origin!. F must obey some additional constrain
571063-651X/98/57~4!/4811~3!/$15.00
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such as a monotonicity, which ensures that no measur
concentrated over a finite interval. All these processes sh
the same power-law PDF,

P~x!5Cx212m, ~3!

for largex, with a m solution of

^b~ t !m&51. ~4!

The fundamental reason for the existence of the power
PDF ~3! is that lnx(t) undergoes a random walk with a dri
to the left, and which is repelled from2`. A simple Bolt-
zmann argument@2# shows that the stationary concentratio
profile is exponential, leading to the power-law PDF in t
x(t) variable.

These results were proved for process~1! by Kesten@3#
using renewal theory, and was then revisited by several
thors in the differing contexts of autoregressive conditio
heteroskedastic~ARCH! processes in econometry@4# and
one-dimensional random-field Ising models@5# using Mellin
transforms, and more recently using extremal properties
theG-harmonicfunctions on noncompact groups@6# and the
Wiener-Hopf technique@2#. Many other results are available
for instance concerning the extremes of the processx(t) @7#,
which shows thatx(t) have similar extremal properties suc
as a sequence of independent identically distributed~IID !
random variables with the same PDF. The subset of tim
4811 © 1998 The American Physical Society
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1<$te%<t at which x(te) exceeds a given thresholdxt1/m

converges in distribution to a compound Poisson proc
with intensity and cluster probabilities that can be made
plicit @7,8#.

II. CHARACTERISTIC FUNCTION FOR µ>2

Within renewal theory or Wiener-Hopf technique, th
casem.2 does not play a special role, and the previo
results apply. In the context of the characteristic funct
used in Ref.@1#, the casem.2 can also be tackled by re
marking that the expression of the Laplace transformP̂(b)
of a power-law PDFP with exponentm presents a regula
Taylor expansion in powers ofb up to the orderl ~wherel
the integer part ofm! followed by a term of the formbm. Let
us give some details of this derivation. The Laplace tra
form

P̂~b![E
0

`

dw P~w!e2bw, ~5!

applied to Eq.~3!, yields

P̂~b!5CE
1

`

dw
e2bw

w11m 5mbmE
b

`

dx
e2x

x11m . ~6!

We have assumed, without loss of generality, that the po
law holds for x.1. Denote l the integer part ofm
( l ,m, l 11). Integrating by partl times, we obtain~for
C5m!

P̂~b!5e2bS 12
b

m21
1¯1

~21! lb l

~m21!~m22!•••~m2 l ! D
1

~21! lbm

~m21!~m22!¯~m2 l ! Eb

`

dx e2xxl 2m. ~7!

This last integral is equal to

bmE
b

`

dx e2xxl 2m5G~ l 112m!@bm

1b l 11g* ~ l 112m,b!#, ~8!

whereG is the gamma function@G(n11)5n! # and

g* ~ l 112m,b!5e2b (
n50

1`
bn

G~ l 122m1n!
~9!

is the incomplete gamma function@9#. We see thatP̂(b)
presents a regular Taylor expansion in powers ofb up to the
order l , followed by a term of the formbm. We can thus
write

P̂~b!511r 1b1¯1r lb
l1r mbm1O~b l 11!, ~10!

where r 152^x&,r 25 ^x2&/2 , . . . are themoments of the
power-law PDF and, reintroducingC, wherer m is propor-
tional to the scale parameterC. For smallb, we exponentiate
Eq. ~10! and rewriteP̂(b) in the form
ss
-

s
n

-

er

P̂~b!5expF (
k51

l

dkb
k1dmbmG , ~11!

where the coefficientdk can be simply expressed in terms
the r k’s. In this we recognize the transformation from th
moments to the cumulants. Expression~11! generalizes the
canonical form of the characteristic function of the stab
Lévy laws, for arbitrary values ofm, and not solely form<2,
for which they are defined. The canonical form is recove
for m<2, for which the coefficientd2 is not defined~the
variance does not exist!, and the only analytical term iŝw&b
~for m.1!. This rationalizes ‘‘the lucky coincidence’’ note
in Ref. @1#, that the results obtained from the characteris
function were found to apply numerically for exponen
m.2.

III. MECHANISM FOR THE STRETCHED EXPONENTIAL
FOUND IN REF. †1‡

To mimic system size limitation, Takayasu, Sato, a
Takayasu introduces a thresholdxc such that forux(t)u.xc ,
b(t),1, and found a stretched exponential truncating
power-law PDF beyondxc . Frisch and Sornette@11# recently
developed a theory of extreme deviations generalizing
central limit theorem which, when applied to multiplicatio
of random variables, predicts the generic presence
stretched exponential PDF’s. Let us briefly summarize
key ideas, and how the theorem applies to the present
text. First, we neglectf (t) in Eq. ~1! for large x(t) @xc is
supposed much larger than the characteristic scale off (t)#.
The problem thus boils down to determining the tail of t
pdf for a product of random variables.

Consider the product

Xn5m1m2 . . .mn . ~12!

If we denotep(m) the PDF of the IID random variablesmi ,
then the PDF ofXn is

Pn~X!;@p~X1/n!#n for X→` and n finite.
~13!

Equation~13! has a very intuitive interpretation: the tail o
Pn(X) is controlled by the realizations where all terms in t
product are of the same order; thereforePn(X) is, to leading
order, just the product of then PDF’s, each of their argu-
ments being equal to the common valueX1/n. Whenp(x) is
an exponential, a Gaussian or, more generally, of the fo
}exp(2Cxg), with g.0, then Eq.~13! leads to stretched
exponentials for largen. For example, when p(x)
}exp(2Cx2), thenPn(X) has a tail}exp(2CnX2/n).

Expression~13! is obtained directly by recurrence. Star
ing from Xn115Xnxn11 , we write the equation for the PDF
of Xn11 in terms of the PDF’s ofxn11 andXn :

Pn11~Xn11!5E
0

`

dXnPn~Xn!E
0

`

dxn11p~xn11!d~Xn11

2Xnxn11!5E
0

` dXn

Xn
Pn~Xn!pS Xn11

Xn
D .

~14!
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The maximum of the integrand occurs fo
Xn5(Xn11)(n11)/n at which Xn

1/n5 Xn11 /Xn . Assuming
that Pn(Xn) is of form ~13!, the formal application of
Laplace’s method to Eq.~14! then directly gives that
Pn11(Xn11) is of the same form. Thus property~13! holds
for all n to leading order inX. See Ref.@11# for a more
detailed derivation.

IV. CONCLUDING REMARKS

Process~1! corresponds to a zero-dimensional proce
An interesting extension consists of takingx to be a function
of space~d dimension! and time. Qualitatively, we thus ob
tain a d-continuous infinity of variablesx, each of which
et

tri-
.

follows a multiplicative stochastic dynamics having form~1!
coupled to nearest neighbors through a diffusion term. M
noz and Hwa@10# numerically found a power-law decay fo
the PDF ofx in the d-dimensional case.

Autocatalytic equations lead to multiplicative stochas
equations that are exactly tractable@12# in the case of Gauss
ian multiplicative noise. Process~1! also describes accumu
lation and discount in finance, perpetuities in insuran
ARCH processes in econometry, and time evolution of a
mal population with restocking@8#. Random map~1! can
also be applied to problems of population dynamics, epide
ics, investment portfolio growth, and immigration across n
tional borders@8#.
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